
GOMACTech Tutorial on Neuromorphic Computing

Organized by Cliff Lau, Barry Treloar, Gerry Borsuk, Christal Gordon, and Michael Fritze

Neuromorphic computing refers to computational paradigms that are inspired by the way the

human brain processes information and thus are intended to be similar to the neuro-biological

architectures present in the nervous system. Neuromorphic engineering, which includes

neuromorphic computing, was a concept developed by Carver Mead in the late 1980s, describing

the use of very-large-scale integration (VLSI) systems containing electronic analog circuits to

mimic the signal processing in the brain, although modeling of neuronal computation goes back

to the 1940s. In the beginning, neuromorphic systems were single chip devices that emulate

peripheral sensory transduction such as silicon retina and silicon cochlea. These artificial neural

systems have demonstrated amazing performance in image and speech processing. Gradually

the emulation moved further up to the central nervous system such as the olfactory cortex and

visual cortex. Many neuromorphic systems have been implemented by software programs in

conventional digital computers and applied to a multitude of problems including speech and

image recognition. In the last decade, implementation of neuromorphic systems has included the

building of artificial brains.

The way the brain computes is very different from conventional digital computers which are

based on the von Neumann architecture with the fetch, compute, and store paradigm with

arithmetic logic unit and memory units. The brain on the other hand consists of neurons and

synapses that connect the neurons together, and the computation and memory are distributed and

integrated throughout the brain. While the computational algorithms and information

representations are largely unknown, it is clear that instead of binary Boolean logic and precise

digital synchronous operations, the brain and central nervous system uses sparse distributed

representations, massively parallel mechanisms, extensive adaptations and self-organization and

learning. How the brain achieve intelligence is not yet completely understood. But by building

computing machine that is similar to the brain, it is hoped that neuromorphic computers would

achieve a certain level of intelligence.

Neuromorphic computing is all about neurons, synapses, learning, and memory. The most

common model of a neuron is summing amplifier or integrate and fire neuron. Synapse serves to

interconnect the neurons together and also serve as storage memory. Most common learning

algorithm is error back propagation and steepest descend weight adaptation. In this tutorial

course, the attendees will learn what neuromorphic computing is all about, and will be able to

apply it to problems such as image processing, object recognition, speech recognition, decision

making, machine learning, and autonomous systems. The attendee will learn a short history of

neuromorphic computing, various ways of connecting the neurons and synapses, computational

architectures and learning algorithms including Deep Learning, application such as object

recognition, and some of the research challenges. The attendee will learn about the several state-

of-the-art neuromorphic systems, both the hardware and software. Finally the attendee will have

an opportunity to experiment and program with these state-of-the-art neuromorphic systems.

https://en.wikipedia.org/wiki/Analog_circuit

GOMACTech Tutorial on Neuromorphic Computing

Monday, March 12, 2018

Hyatt Regency Miami, FL

0730-0800 Registration

0800-0815 Brief history of neuromorphic computing

 Dr. Clifford Lau, IDA

0815-0915 Survey of neuromorphic computing and neural networks in hardware

 Dr. Catherine Schuman, ORNL

0915-1015 Hardware implementations

 Prof. Nathaniel Cady, SUNY Polytechnic Institute

1015-1030 Break

1030-1130 Design and programming methodology

 Prof. James Plank, Univ. of Tennessee

1130-1230 Roadmap to achieve large neuromorphic hardware systems

 Prof. Jennifer Hasler, Georgia Tech

1230-1315 Lunch

1315-1415 Deep learning

 Dr. Wilfried Haensch, IBM Research Yorktown Heights NY

1415-1515 DesignWare EV6x embedded vision processor with DL and CNN for ADAS

application

 Gordon Cooper, Synopsys

1515-1530 Break

1530-1630 Intelligent machines

 Dr. Winfried Wilcke, IBM Research Almaden CA

1630-1730 Efficient machine learning inference in the cloud

 Andy Walsh, Xilinx

Abstracts

1. Brief history of neuromorphic computing

Dr. Clifford Lau

 Neuromorphic computing (NC) refers to computational architectures and algorithms that are

inspired by the way human brain processes information to solve problems and make decisions.

Modeling of neuronal computation goes way back to the 1940s. In 1943 McCulloch and Pitts

showed that neurons can be modeled as a simple threshold device to perform logic function. By

the late 1950s and early 1960s, neuron models were further refined into Rosenblatt’s Perceptron

and Widrow and Hoff’s Adaptive Linear Neuron (Adaline). During the 1970s, Steven Grossberg

at Boston University and Teuvo Kohonen at Helsinki University were making significant

contributions. Grossberg, together with Gail Carpenter, had developed a model architecture they

called adaptive resonance theory (ART) based on the idea that the brain spontaneously organized

itself into recognition codes. In the 1980s, neuronal modeling was given an impetus when John

Hopfield published a paper in the Proceedings of the National Academy of Sciences followed by

another paper in Science. That led to the explosive research growth in artificial neural networks

(ANN), including the forever popular Hopfield Nets and Multilayer Perceptrons (MLP).

Advances in the very large scale integrated circuits (VLSI) technology ushered in the field of

neuromorphic engineering (a term coined by Carver Mead) in the mid-1980s to reflect that the

engineered electronic systems are designed to emulate the computational capabilities of the brain

and the network of neurons and synapses. Carver Mead, together with a large number of

prominent scientists (Max Delbruck, John Hopfield, Richard Feynman, Christof Koch, Terry

Sejnowski, Rodney Douglas, Andreas Androu, Paul Mueller, and others), made convincing

argument that neuromorphic circuits are ideal for implementing the computational principles

exhibited in the brain. Today, the most popular ANN, with application in image recognition, is

Deep Learning (DL), which is basically an MLP with lots of layers and millions of synaptic

weights, and Convolutional Neural Net (CNN).

2. Survey of neuromorphic computing and neural networks in hardware

Dr. Catherine Schuman

 Neuromorphic computing has come to refer to a variety of brain-inspired computers, devices,

and models that contrast the pervasive von Neumann computer architecture. This biologically

inspired approach has created highly connected synthetic neurons and synapses that can be used

to model neuroscience theories as well as solve challenging machine learning problems. The

promise of the technology is to create a brainlike ability to learn and adapt, but the technical

challenges are significant, starting with an accurate neuroscience model of how the brain works,

to finding materials and engineering breakthroughs to build devices to support these models, to

creating a programming framework so the systems can learn, to creating applications with brain-

like capabilities. In this work, we provide a comprehensive survey of the research and

motivations for neuromorphic computing over its history. We begin with a 35-year review of the

motivations and drivers of neuromorphic computing, then look at the major research areas of the

field, which we define as neuro-inspired models, algorithms and learning approaches, hardware

and devices, supporting systems, and finally applications. We conclude with a broad discussion

on the major research topics that need to be addressed in the coming years to see the promise of

neuromorphic computing fulfilled. The goals of this work are to provide an exhaustive review of

the research conducted in neuromorphic computing since the inception of the term, and to

motivate further work by illuminating gaps in the field where new research is needed.

3. Hardware implementations

 Prof. Nathaniel Cady

 Neuromorphic computing systems seek to emulate biological neural functionality emulated in either

software or electrical hardware. A key function for such systems is their ability to learn and adapt. In the

human brain, such learning and adaptation is achieved via modulation of synaptic connections between

different neurons. My research group has focused on the implementation of non-volatile memory

elements (primarily memristors) for synaptic functionality in hardware-based neuromorphic circuits.

Memristors, which can be implemented as resistive random access memory (RRAM) are a novel form of

non-volatile memory expected to replace a variety of current memory technologies and enabling the

design of new circuit architectures. Investigations of ReRAM as a storage technology have shown a

combination of high storage density with fast access and write speeds. Recently, the endurance and

reliability of ReRAM cells have reached the level at which they are competing with commercially

available Flash memory and CMOS technologies, making ReRAM a viable candidate for data storage and

novel logic and security architectures.

In this presentation, I will review multiple approaches for integrating non-volatile memory elements

(such as memristors) with CMOS, to yield functional neuromorphic circuits. In addition, I will explore

the multi-level / analog behavior of some classes of memristors, which can be utilized for high density

memory storage and for setting a range of synaptic weight values per individual (or pairs) of memristive

devices.

4. Design and programming methodology

 Prof. James Plank

 Adapting applications to leverage neuromorphic devices is a challenging task. This is both

from the application perspective and the device perspective. From the application perspective,

application state must be transformed effectively into neuromorphic input, and neuromorphic

output must be interpreted effectively by the application. From the design perspective,

neuromorphic devices must be "programmed" to control or solve an application. This talk will

focus on application design for neuromorphic computing, and on neuromorphic

learning/programming techniques. It will not include deep learning, since that will be the topic

of another tutorial talk. It will include genetic algorithms, spike timing-dependent plasticity

(STDP), and reservoir computing.

5. Roadmap to achieve large neuromorphic hardware systems

 Prof. Jennifer Hasler

 Neuromorphic systems are gaining increasing importance in an era where CMOS digital

computing techniques are reaching physical limits. These silicon systems mimic extremely

energy efficient neural computing structures, potentially both for solving engineering

applications as well as understanding neural computation. Toward this end, the authors

provide a glimpse at what the technology evolution roadmap looks like for these systems

so that Neuromorphic engineers may gain the same benefit of anticipation and foresight

that IC designers gained from Moore’s law many years ago. Scaling of energy efficiency,

performance, and size will be discussed as well as how the implementation and application

space of Neuromorphic systems are expected to evolve over time.

6. Deep learning

 Dr. Wilfried Haensch

 The recent success of machine learning and deep learning networks in image recognition,

speech and language processing stress computational resources. Training of these very large

networks with millions of parameters (weights) can take weeks on current hardware. Inherent in

these workloads is that the underlying algorithms are noise tolerant and amenable to low

precision computation. Custom hardware is created to take advantage of this situation. Reduced

precision digital solutions are emerging first for inferencing and are expected to tackle training as

well soon. The question at hand is: once the avenue of reduced precision has reached its end

what is the next step to address performance bottlenecks?

 Performance in deep learning applications is determined by two factors: (1) computational

efficiency, that is performing the mathematical operation that are required, and (2) bringing the

relevant data, the weights on which the computation is performed, from the memory to the

compute unit. Reduced precision will address both, however it will never eliminate movement of

data.

 One intriguing solution to the problem of weight related data movement is to capture the

weights in arrays of nonvolatile memory and to perform the required computations locally on

these arrays. It turns out, however, that existing memory materials are ill suited for this problem.

Memory materials are optimized for a few reproducible bit states, whereas their application in

deep learning networks requires almost analog switching behavior with a reversible response to

pulse stimulation of opposite polarity.

 To take advantage of this new architecture two possible solution can be pursued: (1) adjust

the control circuitry to accommodate the imperfect switching behavior of current available

materials, like PCM or RRAM; and (2) find a suitable material and architecture that cam

maximize the benefit. Initial estimates show that a more than 10,000 times speed increase could

be feasible at significantly reduced power if the architecture can take advantage of an optimized

switching material. Enhancement factors of this magnitude will open the possibility of local

learning on mobile devices or intelligent devices at the edge of the network.

7. DesignWare EV6x embedded vision processor with DL and CNN for ADAS application

 Gordon Cooper, Synopsys

 The technological demands at the heart of embedded vision applications, in the neural

network, require solutions that deliver the combination of high precision and performance with

low power and area use. The unique combination of the vector DSPs and programmable CNN

engine in the DesignWare EV6x Vision Processor enables developers to implement vision

functionality in their embedded devices with much higher performance efficiency than CPU- and

GPU-based alternatives.

 The DesignWare EV6x Processor family integrates scalar, vector DSP and CNN processing

units for highly accurate and fast vision processing. The EV6x supports any convolutional neural

network, including popular networks such as AlexNet, VGG16, GoogLeNet, Yolo, Faster R-

CNN, SqueezeNet and ResNet. Designers can run CNN graphs originally trained for 32-bit

floating point hardware on the EV6x’s 12-bit CNN engine, significantly reducing the power and

area of their designs while maintaining the same levels of detection accuracy. The engine

delivers power efficiency of up to 2,000 GMACs/sec/W when implemented in 16-nm FinFET

process technologies (worst-case conditions). The EV6x’s CNN hardware also supports neural

networks trained for 8-bit precision to take advantage of the lower memory bandwidth and power

requirements of these graph types.

 To simplify software application development, the EV6x processors are supported by a

comprehensive suite of tools and software. The latest release of the DesignWare ARC®

MetaWare EV Development Toolkit includes a CNN mapping tool that analyzes neural networks

trained using popular frameworks like Caffe and Tensorflow, and automatically generates the

executable for the programmable CNN engine. For maximum flexibility and future-proofing, the

tool can also distribute computations between the vision CPU and CNN resources to support new

and emerging neural network algorithms as well as customer-specific CNN layers. Combined

with software development tools based on OpenVX™, OpenCV and OpenCL C embedded

vision standards, the MetaWare EV Development Toolkit offers a full suite of tools needed to

accelerate embedded software development.

8. Intelligent machines

 Dr. Winfried Wilcke

 While Deep Learning networks have made huge strides in image recognition, speech

processing and similar pattern recognition tasks, this is only the beginning on the long path to

creating truly intelligent machines, also called general or strong artificial intelligence.

 Current deep learning networks are very superficially inspired by the brain in that they

consist of layers of neurons connected with synapses of varying weights, but that's where the

similarity ends. The fundamental operation of (most) artificial neural networks is based on

supervised training, where the network receives some known and human labeled input ("this is a

cat"), then compares the current output of the network with the desired output and tweaks the

values of synapses until the difference (error) is minimized. Mathematically this corresponds to

minimizing an error function in a very high dimensional space by tools like stochastic gradient

descent. We can be certain that this is NOT at all how the brain works. A symptom is that today's

neural network may need tens of thousands of cat images to learn to recognize cats, whereas a

child may need to be told only a few times that this is a cat. Moreover, humans learn

continuously and new knowledge usually doesn't damage prior knowledge, whereas today's

neural networks (except for reinforcement learning) need to have a clear separation between

training phase and execution (or inference) phase and they are very brittle when trying to add

new knowledge.

 Machines will only become intelligent in the human sense if they develop 'common sense'

and reasoning which is the ultimate challenge for general intelligence. A common sense

statement like "Clouds pay no taxes" is obvious to us, but a machine needs to learn a huge

amount of facts about the world to even have a concept of taxes, clouds and any relationship

between them (none in this case). This requires an intelligent machine - like a child - to

autonomously develop a detailed model of the world and the relations between the elements in

this world.

 It is likely that elements of such world models can form autonomously in the brain or an

intelligent machine based on a specific mathematical concept (hierarchical sparse distributed

representations), where sensory inputs form an invariant hierarchy of ever more complex model

elements. However, this bottom up approach will take a long time to bring to fruition, so a hybrid

approach where some preprocessing is done with conventional networks is currently being

developed.

 The potential of this approach has been demonstrated by building several two-legged robots

which learned on their own - without explicit programming - how to walk without falling down.

A new type of neural supercomputer (Escape 9000) is being built by IBM to accelerate the

research into the algorithms underlying intelligent machines. We will shortly discuss a possible

wafer-scale implantation of Escape 9000 called Shannon.

9. Efficient machine learning inference acceleration in the cloud
Andy Walsh, Xilinx

 This demo will allow users to get a look at Xilinx’s machine learning software stack using

FPGA F1 instances on the Amazon EC2 Public cloud. The demo will highlight accelerated

image classification using a modern neural network model such as ResNet50. It’s implemented

through the open source frameworks, such as Caffe and accelerated with the Xilinx Deep Neural

Network library to be fully optimized, delivering the highest compute efficiency for 8 bit

inference.

