Intelligent RF Front Ends- DARPA Study

Session Chair: Martinez

Paper

F	o	С	u	S

						. apo.
Speaker	Author	Title	Phone Number	e-mail	Company	Received
1 E	dgar Martinez	Dr	703-696-7346	emartinez@darpa.r	DARPA	
2 D	aniel K. Ko	Dr.	310-814-5678	daniel.ko@trw.com	TRW	No Papers
3 Jo	ohn A. Windyka	Dr.	603-885-0524	john.a.windyka@ba	BAE Systems	Expected
4 C	raig Keast and Mark Gouker			MIT Lincoln Lab		
5 Jo	ohn J. Zingaro	Mr.	410-765-5399	john_j_zingaro@m	Northrop Grumma	an 📗

Breakout

Title Intelligent RF Front-ends – Digital Control of Analog Circuits

For the last two decades MMIC technology has enabled many of the current military and commercial RF sensors and communication capabilities. A new paradigm to MMIC technology is being proposed in which RF/analog components will possess the ability to self-assess and self-optimize their performance in real time. This is the concept of Intelligent RF Front-end systems – highly adaptable, highly integrated RF/analog components. In this session, the benefits and technical challenges of the Intelligent RF Front-ends components and their impact in future military systems will be discussed.